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Trapped ion motion states
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Mode frequency

Worry about:
• Off resonant couplings
• Incomplete population transfer
• Debye-Waller effects
• Larger time-dilation shifts
• Gate errors from thermal motion
• …



Trapped ion motion states
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The mode-coupling operation
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Direct parametric coupling between two chosen modes via an electric potential
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Ion crystals

Direct parametric coupling between two chosen modes via an electric potential



Generate 𝐻𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 = ℏ𝑔(𝑒𝑖(𝜙+𝜔𝑡) ො𝑎† ෠𝑏 + 𝑒−𝑖(𝜙+𝜔𝑡) ො𝑎 ෠𝑏†)        

 where 𝜔 = (𝜔𝑎 − 𝜔𝑏)

In order to couple two modes 𝑎 and 𝑏, we need

❑Correct coupling frequency

❑Correct coupling curvature

In order to couple two modes OOPH and ALT, we need

Generate 𝐻𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 = ℏ𝑔(𝑒𝑖 𝜙+𝜔𝑡 ො𝑎𝑂
† ො𝑎𝐴 + 𝑒−𝑖 𝜙+𝜔𝑡 ො𝑎𝑂 ො𝑎𝐴

†)        

 where 𝜔 = (𝜔𝑂 − 𝜔𝐴)

Mode coupling principle
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Difficult to couple due to filters



Mode coupling curvature

Coupling constant 𝑔 = σ𝑖=1
𝑁 𝑔𝑖 = σ𝑖=1

𝑁 𝑞𝑖

4 𝜔𝑎𝜔𝑏

𝛼𝑖

𝑚𝑖
𝜉𝑖,𝑂𝜉𝑖,𝐴 , ion index 𝑖

 where: 𝜉𝑖,𝐴𝜉𝑖,𝑂 is the participation vector product of ion 𝑖 in each mode

  𝛼𝑖 is the mode coupling drive curvature at the position of ion 𝑖, 
𝜕2𝑈

𝜕𝑧𝜕𝑧
(𝒓𝑖)

Mg+ has zero participation vector, 𝑔𝑖 is zero

Be+ have equal magnitude but 
opposite sign for 𝜉𝑖,𝑎𝜉𝑖,𝑏

𝑈 𝑧 ∝ 𝑧3

Be+ have equal magnitude but 

opposite sign for 𝛼𝑖 =
𝜕2𝑈

𝜕𝑧2
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𝐻𝑐𝑜𝑢𝑝𝑙𝑖𝑛𝑔 = ℏ𝑔(𝑒𝑖 𝜙+𝜔𝑡 ො𝑎𝑂
† ො𝑎𝐴 + 𝑒−𝑖 𝜙+𝜔𝑡 ො𝑎𝑂 ො𝑎𝐴

†)

𝑞𝑖  𝑖th ion charge
𝑚𝑖  𝑖th ion mass



Mode coupling calibration
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Mode coupling with varying input states
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Phase coherence of mode coupling
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Application: Improving ground state cooling

• Sometimes, not all modes are easily cooled by the coolant ion(s)
• For example, weak cooling could result from ion participation or laser 

geometry constraints

• Solution: couple strongly cooled modes to weakly cooled modes
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Application: Improving ground state cooling
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Application: Improving ground state cooling
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Application: repetitive measurement of 
motional states
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“Protected mode”: 
little/no effect 
from photon 
recoil on Mg+

Use the protected mode to perform 
repetitive readout of motion state through 
Mg+ without corruption from photon recoil.



Application: repetitive measurement of 
motional states
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1. Map motion 
info to spin

3. Detect!

2. Swap to store 
motion state

Store the motion state in the 
protected mode during 
fluorescence detection:

OOPHALT

↑

↓

Internal State
(Pseudo-spin)



• Objective: To distinguish between 0  and 1  of a motional state 
through repetitive measurement without corrupting the state of 
interest

Demonstration of repeated measurement
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Comparison with sideband measurements 
(N=1)
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to confirm |0⟩



Bright

Comparison with sideband measurements 
(N=2)
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Bright

Comparison with sideband measurements 
(N=3)
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Summary

• Using modulated voltages on an ion trap, two motional modes along 
any axes can be rapidly and coherently coupled.
• Modulation needs to have the correct frequency and curvature in order for 

coupling to be successful.

• Modes that are weakly cooled can be coupled to modes that are 
strongly cooled to enable cooling of more modes without additional 
beamlines.

• In crystals that have a protected mode, repeated measurement of a 
motional mode is possible, enabling more avenues of exploration of 
motional degrees of freedom, or for continuous-variable QIP in ion 
traps.
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Mode coupling and repeated detection arXiv.2205.14841
Cooling using mode coupling arXiv.2308.05158
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