Experimental Quantum Channel Discrimination Using Metastable States of a Trapped Ion

Kyle DeBry^{a,b}, Jasmine Sinanan-Singh^a, Colin D. Bruzewicz^b, David Reens^b, May E. Kim^b, Matthew P. Roychowdhury^b, Robert McConnell^b, Isaac L. Chuang^a, and John Chiaverini^{a,b} ^aMassachusetts Institute of Technology ^bMIT Lincoln Laboratory

This research was supported by the U.S. Army Research Office through grant W911NF-20-1-0037. © 2023 Massachusetts Institute of Technology.

Signal discrimination Phase shift keying (PSK) signal: 10 01 00 **Classical signal** processing:

Signal discrimination

Q: What if the signal is very weak (only a few photons)?

A: Use atomic systems!

Quantum Physics

[Submitted on 23 May 2023]

Experimental quantum channel discrimination using metastable states of a trapped ion

Kyle DeBry, Jasmine Sinanan-Singh, Colin D. Bruzewicz, David Reens, May E. Kim, Matthew P. Roychowdhury, Robert McConnell, Isaac L. Chuang, John Chiaverini

We present experimental demonstrations of accurate and unambiguous single-shot discrimination between three quantum channels using a single trapped ⁴⁰Ca⁺ ion. The three channels cannot be distinguished unambiguously using repeated single channel queries, the natural classical analogue. We develop techniques for using the 6-dimensional ${
m D}_{5/2}$ state space for quantum information processing, and we implement protocols to discriminate quantum channel analogues of phase shift keying and amplitude shift keying data encodings used in classical radio communication. The demonstrations achieve discrimination accuracy exceeding 99% in each case, limited entirely by known experimental imperfections.

Quantum signal processing (QSP):

To appear in PRL

Kyle DeBry (debry@mit.edu)

¹S. Pirandola *et al.*, npj Quantum Inf. 5, 1 (2019)

Kyle DeBry (<u>debry@mit.edu</u>)

Quantum channel discrimination Atomic interaction: $U = R(\theta, \phi)$

Kyle DeBry (<u>debry@mit.edu</u>)

Quantum channel discrimination

Goal: determine which of three potential rotations (the "Mercedez-Benz"

²J. Kovačević and A. Chebira, Found. Trends Signal Process. 2, 1 (2008).

operator"²) was applied to an ion in the **feast** queries of the operator ((2))

Mercedes-Benz

Quantum channel discrimination

Goal: determine which of three potential rotations (the "Mercedez-Benz

Prepare

Semi-classical:

 $|\psi_{\mathrm{initial}}\rangle$

Single-measurement success probability³ $\mathscr{P} \leq 2/3$

Quantum: U_1 (?

Single-measurement success probability⁴ $\mathscr{P} = 1$

³A. Laing et al., Phys. Rev. Lett. 102, 160502 (2009)

Kyle DeBry (<u>debry@mit.edu</u>)

operator"²) was applied to an ion in the **fewest** queries of the operator ((2))

⁴Rossi, Z. M., & Chuang, I. L., Physical Review A, 104(1) (2021)

⁴Rossi, Z. M., & Chuang, I. L., Physical Review A, 104(1) (2021)

Hilbert space of 40Ca+

- Use larger Hilbert space of metastable manifold, building on omg techniques⁵
- Encode readout states in D_{5/2} and S_{1/2}
 - $|\phi = 0\rangle$, $|\phi = 2\pi/3\rangle$, $|\phi = 4\pi/3\rangle$
- Qudit-style sequential readout^{6,7}

⁵Allcock, D. T. C. Allcock *et al.*, APL 119, 214002 (2021); Yang, H. -X. *et al.*, Nature Phys., 18 (2022)
⁶Ringbauer, M., *et al.*, Nature Phys., 1–5 (2022)
⁷Low, P. J., *et al.*, Phys. Rev. Res., 2(3), 033128 (2020)

11

Experimental setup

- Cryogenic surface-electrode trap operated at 5 K
- Superconducting Nb rings stabilize B field^{8,9,10}
- Narrow 729 nm laser addresses S_{1/2} to D_{5/2} transitions
- RF coil antenna addressing metastable Zeeman splitting

⁸Gabrielse *et al.*, J. Mag. Res. 91, 564 (1991) ⁹Wang *et al.*, PRA 81, 062332 (2010) ¹⁰Bruzewicz *et al.*, npj QI 5, 102 (2019)

Kyle DeBry (<u>debry@mit.edu</u>)

- to evolve through all states
- - $n\pi$ -rotations behave as expected^{10,11}

D_{5/2} manifold: **B** field compensation

Simulated detuning-induced error

Kyle DeBry (<u>debry@mit.edu</u>)

Zeeman frequency Allan deviation

ECTI 2023-09-25

15

ECTI 2023-09-25

16

Phase shift keying performance

Accuracy

99.4 $^{+0.1}_{-0.2}$ %

28 total pulses • 9 ga nanifold S **J**5/ •~99 y each e

DeBny et al., PRL, in press (2023)/arxiv:2305.14272

Kyle DeBry (<u>debry@mit.edu</u>)

Error

Error estimates

- RF detuning: 0.3%
 - SPAM: 0.2%

Spontaneous decay: < 0.1%

What about other data encodings?

θπ ἡπ 〉

θ

θ θπ π

DeBry et al., PRL, in press (2023)/arxiv:2305.14272

Summary

- Single shot, deterministic differentiation between nonorthogonal rotations
- Novel use of D_{5/2} manifold for QIP
- Quantum advantage over "semi-classical" result

[Submitted on 23 May 2023]

Experimental quantum channel discrimination using metastable states of a trapped ion

Kyle DeBry, Jasmine Sinanan-Singh, Colin D. Bruzewicz, David Reens, May E. Kim, Matthew P. Roychowdhury, Robert McConnell, Isaac L. Chuang, John Chiaverini

We present experimental demonstrations of accurate and unambiguous single-shot discrimination between three quantum channels using a single trapped ${}^{40}Ca^+$ ion. The three channels cannot be distinguished unambiguously using repeated single channel queries, the natural classical analogue. We develop techniques for using the 6-dimensional $D_{5/2}$ state space for quantum information processing, and we implement protocols to discriminate quantum channel analogues of phase shift keying and amplitude shift keying data encodings used in classical radio communication. The demonstrations achieve discrimination accuracy exceeding 99% in each case, limited entirely by known experimental imperfections.

DeBry et al., PRL, in press (2023)/arxiv:2305.14272

Kyle DeBry (<u>debry@mit.edu</u>)

To appear in PRL

PSK

99.4^{+0.1}

Acknowledgements

Jasmine Sinanan-Singh Colin Bruzewicz

Kyle DeBry

Dave Reens

Matthew Roychowdhury

Robert McConnell

Isaac Chuang

John Chiaverini

Kyle DeBry (<u>debry@mit.edu</u>)

ECTI 2023-09-25

MIT Campus:

- Susanna Todaro
- Ethan Clements
- Felix Knollmann
- Xiaoyang Shi
- Gabriel Mintzer

Summary

- Single shot, deterministic differentiation between nonorthogonal rotations
- Novel use of D_{5/2} manifold for QIP
- Quantum advantage over "semi-classical" result

[Submitted on 23 May 2023]

Experimental quantum channel discrimination using metastable states of a trapped ion

Kyle DeBry, Jasmine Sinanan-Singh, Colin D. Bruzewicz, David Reens, May E. Kim, Matthew P. Roychowdhury, Robert McConnell, Isaac L. Chuang, John Chiaverini

We present experimental demonstrations of accurate and unambiguous single-shot discrimination between three quantum channels using a single trapped ${}^{40}Ca^+$ ion. The three channels cannot be distinguished unambiguously using repeated single channel queries, the natural classical analogue. We develop techniques for using the 6-dimensional $D_{5/2}$ state space for quantum information processing, and we implement protocols to discriminate quantum channel analogues of phase shift keying and amplitude shift keying data encodings used in classical radio communication. The demonstrations achieve discrimination accuracy exceeding 99% in each case, limited entirely by known experimental imperfections.

DeBry et al., PRL, in press (2023)/arxiv:2305.14272

Kyle DeBry (<u>debry@mit.edu</u>)

To appear in PRL

PSK

99.4^{+0.1}

