

Solving a 9σ discrepancy between hyperfine theory and experiment in HD⁺ trapped ions

Jeroen Koelemeij Vrije Universiteit Amsterdam

Schloß Bückeburg, September 28, 2023

7th European Conference on Trapped Ions

Our interest in molecular hydrogen ions

- H₂⁺, HD⁺: simple three-body systems Internal degrees of freedom:
 - Electronic
 - Vibrational
 - Rotational
 - Spin

- Relative uncertainty theoretical vibrational level energies ~20 ppt Of which <10 ppt due to QED theory* CODATA-18 m_p/m_e largest contributor (~15 ppt)
 *Korobov, Hlico, Karr PRL 118, 233001 (2017) Korobov & Karr, PRA 104, 032806 (2021)
- Rotational & vibrational spectroscopy: 1.5 15 ppt

Amsterdam/Paris Düsseldorf Science **369**, 1238 (2020) Nature **581,** 152 (2020), Nat. Phys. **17,** 569 (2021), Nat. Phys. **19,** 1263 (2023)

 \Rightarrow Determination of $m_{\rm p}/m_{\rm e}$ with ~20 ppt uncertainty

Amsterdam HD⁺ spectroscopy setup

- RF ion trap with large ensembles of Be⁺ ions, laser-cooled by a 313 nm laser
- Embed HD⁺ ions ⇒ sympathetic cooling to 10 mK
- We image 313 nm fluorescence on an EMCCD camera \Rightarrow count number of HD⁺
- Spectroscopy via resonance enhanced multiphoton dissociation (REMPD)*
- Large trap, weak confinement
 ⇒ not in the optical Lamb-Dicke regime
- Doppler broadening to ~10 MHz (that's 24000 ppt...)
- Unpaired electron in HD⁺: Zeeman effect 3400 ppt/G...)

*B. Roth, J.C.J. Koelemeij, H. Daerr, S. Schiller, PRA **74**, 040501(R) (2006) J.C.J. Koelemeij, B. Roth, A. Wicht, I. Ernsting, S. Schiller, PRL **98**, 173002 (2007)

Two-photon spectroscopy

- 2013: proposed two-photon Doppler-free spectroscopy*
- Effective wave vector 0.7 mm: can use our weakly confining rf trap ③ (Lamb-Dicke regime)
- <2 kHz laser line width (natural line width ~10 Hz)</p>
- Frequency measurement uncertainty <1 ppt (Cs clock, frequency comb laser)</p>

*V.Q. Tran, J.-Ph. Karr, A. Douillet, J.C.J. Koelemeij, L. Hilico, Phys. Rev. A 88, 033421 (2013)

** S. Patra, PhD thesis VU Amsterdam, 2018

Hyperfine structure...

ν

Hyperfine structure...

Homologous initial and final spin states: near-cancellation of Zeeman effect ©

UNIVERSITEIT

Doppler-free laser spectroscopy - results

- First observation of Doppler-free optical transitions in HD⁺ (v=0 v'=9)
- Spin-averaged transition frequency measured with 1.6 kHz uncertainty (3.9 ppt)
 - 0.6 kHz (1.5 ppt) pure experimental uncertainty, 1.6 kHz due to theoretical hyperfine structure correction

* S. Patra, M. Germann, J.-Ph. Karr, M. Haidar, L. Hilico, V.I. Korobov, F.M.J. Cozijn, K.S.E. Eikema, W. Ubachs, J.C.J. Koelemeij, Science 369, 1238 (2020)

HD⁺ and fundamental particle mass ratios

• Transition frequencies depend on nuclear reduced-to-electron mass ratio:

$$\mu_r = \frac{m_{\rm p}m_{\rm d}}{m_{\rm p}+m_{\rm d}}/m_{\rm e}$$

- Several transitions have been measured, but all contain hyperfine shifts ~100 MHz – how to correct for hfs?
 - Note: not enough experimental data to reconstruct hfs must rely on theory...

Removing hyperfine structure

For a given rovibrational transition $v_1, L_1 \rightarrow v_2, L_2$:

- Experimental values:
- Theoretical predictions:
- Obtain ν_{SA} by weighted least-squares adjustment of N equations^{*,**}: \frown Contains information on m_p, m_d, m_e, μ_r !

 $v_{\exp}^i \doteq v_{SA} + v_{hfs}^i$

- Note: simplified picture, actual adjustment is more involved**
- Uncertainty of theory values $v_{\rm hfs}^i$ strongly correlated:
 - Spin-spin interactions developed from same QED framework
 - Same hyperfine uncertainties for different rovibrational states
- Mandatory to include all HD⁺ data in a single adjustment**!
 - Adjust $v_{SA,1}, v_{SA,2}, v_{SA,3}, \dots$
 - Correlations included in input covariance matrix
 - * J.C.J. Koelemeij Mol. Phys. 120, e2058637 (2022).
 - ** J.-Ph. Karr & J.C.J. Koelemeij *Mol. Phys* (2023). DOI: <u>10.1080/00268976.2023.2216081</u>

 v_{exp}^{i} (*i* = 1,2,...,*N*)

 $v_{\rm theo}^i = v_{\rm SA} + v_{\rm hfs}^i$

 v_2, l_2

adjust

 v_1, L_1

 $\nu_{\mathrm{SA,1}}$

Hyperfine discrepancies

- After adjustment: deviations of up to 7.1σ for two rotational L = 0 1 lines and for the two v = 0 9 lines*
 - 4 out of 10 lines deviate
 - Unclear whether problem lies in theory or experiment
 - Absorb deviations by increasing all uncertainty margins by 3.6 (expansion factor)
 - Reduce tension to below 2σ
 - Other recent approach: composite frequency approach & omission of 'problematic' lines from analysis**
- Least-squares + expansion factor pros and cons:
 - \mathfrak{S} Uncertainty of final results increased \Rightarrow smaller scientific impact
 - ② Larger uncertainty reduces 'shock' by the time discrepancies are resolved
 - ③ Agnostic to human perception & untested hypotheses (i.e. avoids human bias)

HD⁺ and fundamental particle mass ratios

Karr & Koelemeij, Mol. Phys. (2023) DOI: 10.1080/00268976.2023.2216081

FIG. 2. Interplay of experiments to improve fundamental constants and bound-state QED tests.

Values of fundamental constants (CODATA)

Fundamental constants & new physics

- ... but if SM/QED theory were incomplete, discrepancies could be due to new physics
- Do we get a better match if we extend the theory with 'new' particles/forces? Delaunay, Karr, Kitahara, Koelemeij, Soreq & Zupan *Phys. Rev. Lett.* **130**, 121801 (2023)

Back to Amsterdam...

ASERLAB

msterdam

Hyperfine anomaly??

 Our measured hyperfine interval is actually much larger than theoretically predicted!

16

- 4σ discrepancy in 2020
- 9σ discrepancy after 2022 theory update (Haidar et al. PRA **106,** 042815 (2022))

What is going on?

ASERLAB

msterdam

The plot thickens...

- Remarkably, the hfs of H₂⁺ (same theory!) agrees perfectly with direct hfs measurements (rf spin flip spectroscopy, K. B. Jefferts *PRL* 1969, theory: Korobov, JK, Hilico, Karr, *PRL* 2016)
- So, in H₂⁺ there is agreement at the 1 kHz level
- ... but in HD⁺ the disagreement seems to be >>1 kHz
- Muonic <u>hydrogen</u> 2S hyperfine splitting: experiment and theory in agreement
- Muonic <u>deuterium</u> 2S hyperfine splitting: 5σ discrepancy!
 - See e.g. M. Kalinowski, PRA 99, 030501(R) (2019)
 Kalinowski, Pachucki, Yerokhin, PRA 98, 062513 (2018)

Proton√ Deuteron≭

⁴He, ⁶Li, and ⁷Li. We note, however, that the spin-dependent part of the nuclear polarizability is not well understood, which is reflected in the recently observed 5σ discrepancy between the theoretical prediction [30] and the experimental measurement [8] of the 2*S* hyperfine splitting in muonic deuterium. In general, to reduce the uncertainty further and

Hyperfine spectroscopy

 Measure hyperfine splittings in v=0, L=3 and v=9, L=3 directly (RF spin-flip spectroscopy) to verify the experimental value of the 178 MHz 'anomalous' interval

Dmitrii Kliukin

(postdoc)

- Work performed under financial assistance award NIST PMG 60NANB21D184
- RF excitation: only 532 nm laser on, other lasers off
- Target uncertainty ~0.1 kHz

Challenge 1: Zeeman shifts

 $^{9}Be^{+}(I=3/2)$

- Unshielded ion trap with modest (~ 1 G) bias field ٠
- HD⁺, Be⁺ unpaired electron, Zeeman shifts ~1 MHz/G • (broadening > 30 kHz)
- Bias field calibration using Be⁺ hyperfine spin-flips and • known Be⁺ Zeeman effect [Wineland et al., PRL 50, 628 (1983)]
 - Uncertainty 1 mG, long-term variations: 10-20 mG
- RF field amplitude and state of polarization determined ٠ from Be⁺ as well (RF Rabi flopping on σ/π transitions)

Fluxgate magnetic field sensors: ~10 mG rms noise due to 50 Hz, 830 Hz (turbo pump), switching power supplies...

Challenge 1: Zeeman shifts

- B-field instability 10 20 mG \Rightarrow ~20 kHz of Zeeman shift/broadening
 - To be implemented: B-field stabilization (~30 dB suppression of noise below 1 kHz)
- Or: resolve field-insensitive transitions $FSJM_J$: $125M_J = 0 \rightarrow 014M_J = 0,-1$
 - Line widths <0.2 kHz

Sjard ter Huurne (BSc student)

However...

21

Challenge 2: Quantum statistics

- 50-100 HD⁺ ions in trap
- Room-temperature BBR: population distributed over lowest 6 rotational states/384 magnetic substates
- So most times our trap contains exactly 0 HD⁺ ions in the v=0, L=3, FSJ=125, M_J=0 target state
- Solution:
 - Rely on BBR recycling (repeated 50 ms RF spin-flips + 50 ms REMPD during 30 seconds)
 - Use periodic 'Majorana depolarization': after RF spin-flip, reduce bias field to 0 G, and let noisy AC fields reshuffle the M_J populations
 - Increases SNR by a factor of 50, total REMPD (signal) losses of 5-15%
 - Acquire single spectrum in 24 hours (fully automated setup)
 - Combine up to 4 spectra (acquired under same conditions)

v = 0 -

Preliminary results

F=1

F=0 S=2

J = 4

1.9

ASFR

2.0

23

v=0. L=3

1050.8 MHz

- Improved calculation Zeeman effect (J.-Ph. Karr, preliminary) •
- Measure $M_1: 0 \rightarrow -1$ spin-flip transitions at various static fields
- Fit theoretical Zeeman shift + offset frequency + offset *B*-field
 - $f_{off} = 1.73(4)$ kHz, $B_{off} = -10(5)$ mG [consistent with long-term stability of *B*-field]

Systematic effects (work in progress)

Freq. offset from **zero-field** theoretical trans. freq. (kHz) •

v=0, *L*=3 *FSJ*: 125 – 014 transition: $f_{exp} - f_{theo} = +1.7(9) \text{ kHz} (1.9\sigma)$

(limited by 0.89 kHz theory uncertainty)

- Target uncertainty: 0.1 kHz (or 0.1 ppm)
- AC-Stark shifts due to lasers: expected to be <1 Hz
 - No detectable shift when reducing 532 nm laser intensity by 50%
 - Other lasers (1442 nm, 1445 nm) expected to have similar small shifts
- AC-Zeeman shifts: expected to be <50 Hz
 - Including trap rf field: *B*-fields from electrode currents don't cancel out (trap geometry/connections)
 - Magnetic component BBR field (cf. Barrett group, PRA 98, 032514 (2018))
- Quadrupole shifts: expected to be negligible
 - cf. work by Barrett group, PRA 99, 022515 (2019); Bakalov & Schiller, Appl. Phys. B 114,:213–230 (2014)
- Motional effects (2nd-order Doppler), space charge effects, magnetic field of spin-polarized Be⁺ ensemble: expected to be negligible

Jukka John (BSc student)

Conclusion & outlook

- Measure hfs in both v=0, L=3 and v=9, L=3
- Evaluation of systematic shifts and uncertainty
 - Field-free RF spin flips: test theory prediction 178 MHz interval
 - Recreate conditions two-photon spectroscopy: test experimental 178 MHz interval
- Measure multiple hyperfine lines to identify origin of 1.9σ offset: p, d, or molecular rotation?
 - Fermi contact interaction (p-e, d-e) or spin-orbit interaction
- Hint towards a possible explanation:
 - +1.7 kHz deviation in v=0, L=3 requires $f_{exp} f_{theo} = -6.8$ kHz in v=9 to reconcile 8.5 kHz discrepancy... ... sign opposite to shift v=0 \Rightarrow missing vibrational effect in the hyperfine theory?
 - OR find extraordinarily large <u>vibrational- and spin-dependent</u> systematic shift that was overlooked in the two-photon spectroscopy?

Thank you!

Questions: j.c.j.koelemeij@vu.nl

Velderman

- Sayan Patra (former PhD student)
- Matthias Germann (former postdoc)
- Frank Cozijn (former MSc student)
- Kjeld Eikema
- Wim Ubachs
- Rob Kortekaas (technician)

External collaborators

- Vladimir Korobov (Dubna, Russia)
- Jean-Philippe Karr (LKB Paris)
- Laurent Hilico (LKB Paris)
- Mohammad Haidar (LKB Paris)

Standards and Technology

U.S. Department of Commerce

nternationalising education

NWC

Scheepvaartmuseum Amsterdam