25.–29. Sept. 2023
Schloss Bückeburg
Europe/Berlin Zeitzone

High-Accuracy Optical Clock Based on 115In+ / 172Yb{}^+$ Mixed-Species Coulomb Crystals

27.09.2023, 10:00
30m
Schloss Bückeburg

Schloss Bückeburg

Schlossplatz 1 31675 Bückeburg
Invited Speaker Wednesday

Sprecher

Jonas Keller (Physikalisch-Technische Bundesanstalt)

Beschreibung

Optical clocks based on mixed-species Coulomb crystals promise reductions of both statistical and systematic uncertainties beyond the state of the art.

We operate an optical clock based on the combination of 115In+ (clock) and 172Yb+ (auxiliary) ions, which we have identified as a candidate for multi-clock-ion operation with 1019 level systematic uncertainties [1,2].

Our approach uses short linear chains (~10 ions), in which the permutation of species is actively controlled to ensure efficient and reproducible sympathetic cooling conditions [3]. The systematic uncertainty is currently evaluated as 2.5×1018 for operation with a single In+ clock ion, which yields an instability of σy=1.6×1015/t [4]. The clock has participated in local and international comparisons, and operation with up to four clock ions has been demonstrated.

Besides its use for sympathetic cooling, mixed-species operation also allows the reduction of systematic uncertainties. Fluorescence from the 2S1/2 to 2P1/2 cooling transition in Yb+ is used for excess micromotion compensation during clock operation. Uncertainties of the differential polarizability and the 3P0 g factor of In+ can be reduced using interleaved interrogation of different transitions in the mixed-species system. These measurements can reduce the frequency uncertainty contributions due to black-body radiation and the 2nd-order Zeeman shift from their respective current values close to 1×1018 by more than an order of magnitude each.

[1] N. Herschbach et al., Appl. Phys. B 107, 891 (2012)
[2] J. Keller et al., PRA 99, 013405 (2019)
[3] T. Nordmann et al., in preparation
[4] H. N. Hausser et al., in preparation

Hauptautoren

Jonas Keller (Physikalisch-Technische Bundesanstalt) Tabea Nordmann (Physikalisch-Technische Bundesanstalt) Hartmut Nimrod Hausser (Physikalisch-Technische Bundesanstalt) Nishant Bhatt (Physikalisch-Technische Bundesanstalt) Ingrid Dippel (Physikalisch-Technische Bundesanstalt) Moritz von Boehn (Physikalisch-Technische Bundesanstalt) Tanja E. Mehlstäubler (Physikalisch-Technische Bundesanstalt)

Präsentationsmaterialien

Es gibt derzeit keine Materialien.