Zum Hauptinhalt springen
25.–29. Sept. 2023
Schloss Bückeburg
Europe/Berlin Zeitzone

High-precision isotope shift measurements in highly charged ions

26.09.2023, 14:45
20m
Schloss Bückeburg

Schloss Bückeburg

Schlossplatz 1 31675 Bückeburg

Sprecher

Dr. Lukas J. Spieß (Physikalisch-Technische Bundesanstalt, Braunschweig)

Beschreibung

Highly charged ions (HCI) have long been proposed for the application in optical clocks due to their extreme atomic properties. This allows for tests of fundamental physics and promises a systematic uncertainty that can compete with the state-of-the-art [1]. However, their application as frequency references has long been impeded by the megakelvin temperatures at which HCI are typically produced and stored. In our work, this is overcome by extracting HCI from a plasma and transferring them to a cryogenic linear Paul trap. There, a single HCI is sympathetically cooled using singly-charged Be+ ions, enabling quantum logic spectroscopy with Hz-level resolution [2] which paved the way to optical clock operation. The evaluation of the experimental setup yielded a systematic uncertainty of 2×1017, comparable to many other optical clocks. As a demonstration, the frequency of the electric dipole-forbidden transition in Ar13+ was compared to the well-known octupole transition in 171Yb+. The derived absolute frequency and isotope shift (36Ar13+ vs 40Ar13+) are compared to the best previous result, providing an improvement by eight and nine orders of magnitude, respectively. For the first time, this has enabled to resolve the QED nuclear recoil in a many-electron system [3]. The applied techniques are universal and can easily be transferred to other HCI species. Recently, we demonstrated this by performing measurements of Ca14+, where we investigated the isotope shift of the transition frequency and the excited-state g-factor. These results will be used to test fundamental physics and search for new physics [4, 5].
[1] M. G. Kozlov, et al., Rev. Mod. Phys. 90, 045005 (2018)
[2] P. Micke, et al., Nature 578, 60–65 (2020)
[3] S. A. King, L. J. Spieß, et al., Nature 611, 43-47 (2022)
[4] N.-H. Rehbehn, et al., Phys. Rev. A 103, L040801 (2021)
[5] J. C. Berengut, et al., Phys. Rev. Lett. 120, 091801 (2018)

Autor

Dr. Lukas J. Spieß (Physikalisch-Technische Bundesanstalt, Braunschweig)

Co-Autoren

Herr Alexander Wilzewski (Physikalisch-Technische Bundesanstalt, Braunschweig) Herr Malte Wehrheim (Physikalisch-Technische Bundesanstalt, Braunschweig) Dr. Shuying Chen (Physikalisch-Technische Bundesanstalt, Braunschweig) Dr. Steven A. King (Physikalisch-Technische Bundesanstalt, Braunschweig) Herr Michael K. Rosner (Max-Planck-Institut für Kernphysik, Heidelberg) Herr Nils H. Rehbehn (Max-Planck-Institut für Kernphysik, Heidelberg) Dr. Erik Benkler (Physikalisch-Technische Bundesanstalt, Braunschweig) Frau Melina Filzinger (Physikalisch-Technische Bundesanstalt, Braunschweig) Dr. Nils Huntemann (Physikalisch-Technische Bundesanstalt, Braunschweig) Prof. Andrey Surzhykov (Physikalisch-Technische Bundesanstalt, Braunschweig) Prof. Vladimir A. Yerokhin (Physikalisch-Technische Bundesanstalt, Braunschweig) Prof. José R. Crespo López-Urrutia (Max-Planck-Institut für Kernphysik, Heidelberg) Prof. Piet O. Schmidt (Physikalisch-Technische Bundesanstalt, Braunschweig)

Präsentationsmaterialien